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We develop a hierarchical structuiieS) analysis for quantitative description of statistical states of spatially
extended systems. Examples discussed here include an experimental reaction-diffusion system with Belousov-
Zhabotinsky kinetics, the two-dimensional complex Ginzburg-Landau equation, and the modified FitzHugh-
Nagumon equation, which all show complex dynamics of spirals and defects. We demonstrate that the spatial-
temporal fluctuation fields in the above-mentioned systems all display the HS similarity property originally
proposed for the study of fully developed turbulerjize-S. She and E. Leveque, Phys. Rev. Lat?, 336
(1994)]. The derived values of a HS paramef@ifrom experimental and numerical data in various physical
regimes exhibit consistent trends and characterize the degree of turbulence in the systems near the transition,
and the degree of heterogeneity of multiple disorders far from the transition. It is suggested that the HS analysis
offers a useful quantitative description for the complex dynamics of two-dimensional spatiotemporal patterns.
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[. INTRODUCTION argued[6] that the number of defects can be a convenient
) ) ] . Qquantity to characterize spatiotemporal chaos. However, the
Spatiotemporal chaos have been studied extensively in r@g|ation between the finite-time dimension and the number of
cent years with different levels of quantitative characterizagefects has not been fully established for systems of all sizes
tion [1]. It was discovered that for some spatially extendedand of all duration intervals, and thus the method of separa-
systems such as the Rayleigh-BéngR@) convection[2,3],  tion has not appeared fully convinciig]. In addition, when
an ordered state of straight or weakly curved rolls breakgpatiotemporal pattern become chaotic, the identification of
down to a spatiotemporally chaotic state consisting of elthe basic structurée.g., the defegtis not always possible,
ementary spiral structures which appear and disappear in a@and its statistics become dubious. In general, spirals act more
irregular fashion. Spiral patterns driven far from equilibrium like waves than particles, but sometimes they may display
have also been studied in chemical reaction-diffusion sysspatially intermittent features. Note that, although the RB
tems such as Belousov-ZhabotinglBZ) reaction[4] and in ~ convection, the BZ reaction, and the CGL system all exhibit
biological systems such as cardiac muscle tig&jeWhile spiral wave behaviors a_nd defect structures, the instabilities
an individual spiral is considered as a self-organized topoleading to complex spatiotemporal behaviors are of different
logical defect, instabilities can lead to so-called defect-Nature. Moreover, local pattern structures may also appear in
mediated turbulencfs] that is characterized by an exponen- various forms of spiral, stripe, hexagon, or square. Neverthe-
tial decay of correlations with length and time. There haveess, transitions from ordered to disordered states exist in aI}
been very fruitful efforts in the theoretical, experimental andtﬂese systems, ar;d a (ianmon f:aatlfjlre of these t_rra;]nsmfons IS
numerical studies on the onset phase of the instability Whic'iiﬁ]p?eegﬁgﬁg)rzegokg; E:,E) dipz(r:]?jgnt gﬁﬁ:ﬂg};ls ofe}trr?eop:;-
result_s in the bre_aklng down of Sp'“’?" waves to the earlyticular system is needed to reveal the essential feature of
transition to the disorder staté®r a review on the complex

X spatiotemporal chaos “buried in the wealth of available data”
Ginzburg-LandayCGL) system, see Re{7]. The study of g} The present work propose such a simple phenomenology
the transition via instabilities is important for problems such

. : ) X ~'but with a quantitative measure.
as the transition from spiral to spiral turbulence in heart tis- There are several other quantitative measures proposed
sue which plays an essential role in cardiac arrhythmia angh, oharacterizing disorder in pattern dynamics. Correlation

fibrillation [5). . . . o length was directly estimated in experimef€§, and was
Another question often raised is what quantitative meay s extracted from correlation functiofis0] or from the

sures are useful when spatiotemporal patterns evolve, eSPRidth of so-called structure factofd1,12. Hu et al. [13]

cially afte_r dspa_ltlotgn;nporal cr:jaos e(;re develloq@d?]. At(; fproposed to use local wave numbers as an order parameter to
tempt to identify defects and conduct statistical study Ofp,acterize experimental RB patterns. Gunaratra. [14]

defects in defect-mediated turbulence has yielded some irE’uggested a disorder function to describe disordered patterns

teresting results. In the discussion on the CGL system, it WaS|ose to locally striped structurés5]. Egolf et al. [16] pre-

sented a simple algorithm for real-time quantitative analysis
of local structure by computing the local wave number in
*Email address: she@pku.edu.cn disordered striped patterns. Newell and co-worké&i used
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the entire range of scales. This set of PDFs carries the prob-
ability information for fluctuations at different scalésrge
versus smajland at different intensitiegail events versus
core events The scale enters as a parameter when the fluc-
tuation field is filtered for defining random variables, and the
intensity is parametrized by the order of the moments calcu-
lated with the PDFs. Therefore, the dependence of the mo-
ments on the scalé and on the ordep constitute a set of
quantitative measures about the properties of the field.

The HS model gives a special compact description of this
set of multiscale and multi-intensity properties. The basic
idea in the HS model is that many statistically stationary
multiscale fluctuation fields generated from nonlinear inter-
actions between many degrees of freedom have a self-

FIG. 1. The phase diagram of the BZ experiment reproducedrdanized property expressible in terms of multifractal scal-
from [18]. The concentrationEMA J* and[H,SO,]® are the control NG Whose multifractal dimension function can be understood
parameters. The solid lines indicate the onsets of different instabiliin terms of a similarity relation between structures of in-
ties. The dashed lines are the extrapolation of the solid lines. ThEreéasing intensities of successive moment-omlg0]. This

heavy line with arrows afMA]A=0.4M indicate the case studied NeW similarity relation was proposed for turbulence as a gen-
here. eralization of the Kolmogorov's complete scale similarity

[21]. Later, it was discovered that the HS similarity is satis-
fied in a variety of nonlinear systems and other complex

a wave-vector field determined by the wavelet transform tasystems, such as the RB convect|@2], the Couette-Taylor
study the behavior of phase-diffusion equations in the presfiow [23], flows in rapidly rotating annulug24], the climate
ence of defects. All the methods mentioned above are effegariations [25], the variation of nucleotide density along
tive to describe irregular patterns Wlth “visually” distinct lo- pnA sequencef26], the diffusion-limited aggregatd@7], a
cal structures such as local striped structure. Whemy,ciyating luminosity field of natural imagdg8] and sev-
spatiotemporal chaos are overwhelmingly developed, howgrg| others[29]. More interestingly, the previous studies
ever, local striped structures cannot be defined and thesg,oy that the derived HS parameters are closely related to
measures cannot be applied. This is the case for spiral turb%1oba| property of the turbulent system. For example, in
lence in highly turbulent regimes of BZ experiments WhereCouette-Taonr flow, one HS parameter gives a signature of
either exact defect structures or characteristic wave numbegge breaking down of the Taylor vortd23]. It is thus hoped
are difficult to obtain. The present study gives a differentyat the HS analysis would shed light on the properties of a
approach which may be applicable to much more disordereg,,cyation field displaying spatiotemporal chaos.
patterns. _ . , , _ In [18,19, the HS analysis is briefly applied to describe

The BZ reaction system is a particularly interesting syS+he spiral turbulence in the BZ experiment and in the numeri-
tem for the study of the spiral dynamics, where spirals can bgy| solutions of the two-dimensional CGL equation. It was
supported in excitable or oscillatory media,4]. A recent  ghown that the HS similarity is accurately verified for vari-
experimental study18] has systematically identified several o5 experimental and numerical two-dimensional fluctuation
regimes of spatial patterns resulted from two instabilities, gje|ds which include both the ordered spirals and spatiotem-
Doppler instability and a long wavelength instability. At vari- poral chaos. In the study of the BZ experiment, it is discov-
ous values of the chemical concentration in reserdonf  oraq that the measured HS paramefeshows a transition
malonic_acid [MAJ* and in reservoirB of sulfuric acid  \yhen the system undergoes a transition from one kind of
[H,SO,]°, the BZ reaction system displays a variety of pat-gpiral turbulence state to anotherg., from the stat® to the
terns including(see Fig. 1 which is reproduced from Fig. 1 stateT in Fig. 1). Those preliminary findings have inspired
of Ref. [18]) the following: simply rotating spiralS); mean-  the present detailed study of the naturefvhile a more
dering spiral(M); chemical turbulence due to the Doppler complex sequence of transitions are analyzed and more nu-
instability (D); abnormal chemical turbulendd); renascent merical models are considered.
stable spiral(R); convectively unstable spirdlC; and Cy); Specifically, we will examine more experimental data
and chemical turbulence due to the long wavelength instabilwith transitions between complex states. In Fig. 1, at
ity (T). This rich set of spiral patterns is an ideal system forf MA1=0.4, the patterns vary throug, S, C;, A, C,, R,
testing theoretical methods for characterizing spatiotemporandT. During the transition, the amount of order.g., spiral
chaos. structurey, the degree of heterogeneifyith the mixing of

We have proposed a hierarchical structdssS) descrip- ordered and disordered structuremnd intermittency vary
tion of spatiotemporal chad48,19 based on an earlier HS with parameters. We will show thg8 characterizes such
model of She and Leveque for hydrodynamic turbulenceransitions near and far from the threshold in the experimen-
[20,21]. The starting point of the analysis is to construct atal BZ system. We supplement this with a further detailed
multiscale probability density functiofPDF description for  study of the spiral dynamics in the CGL equatiath and in
the fluctuation field of our interest, and then to develop aa two-component model equation called modified FitzHugh-
phenomenological model for the description of PDFs oveNagumo(MFN) model [30,3] which has a number of ap-
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plications in biological systems. In all cases, we focus on the %0007 — y T y T y T y T
validity of the HS description and the explanation of the [

dynamics in terms of the degree of heterogeneity and of in- %% ]
termittency that the value @8 indicates. We believe that the 0.0005 | ]
relationship between the values gfand the dynamics of = =

spatiotemporal patterns is valuable. L 0.0004 | ]

The paper is organized as follows. In Sec. Il, we presentS I
briefly the HS model with special emphasis on the method oft, 4 o0
the HS similarity test(B-tesh and the explanation of the I ]
meaning of 8. Section 1l is devoted to the analysis of a 0.0002 |- o B=1.00 [H,S0,=0.367M i
sequence of complex transitions in the experimental BZ sys- ] o p=0.75 [H.SO F=1.000M
tem. In Sec. IV, we carry out a detailed study of the transition  oc.0001 | s p=061 [st 0‘]B= 1.600M
of the spiral dynamics in the CGL equation and the MFN - ﬁ p=0- moe

H 1 H'H 0.0000 1 N 1 M [l N 1 N 1
ziqsléitsl(;ino.nSectlon V offers a summary and some additional 200 o001 o o o™
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FIG. 2. The HS similarity test for three patterns from the experi-
mental BZ system{H,S0,]¥=0.367M, 1.0M, and 1.6M. The other

o control parameter is fixed &8MA1*=0.4M. A straight line indicates
The HS model has been originally proposed by She anﬂwe validity of the HS similarity. The slopg is estimated by a least

Leveque to describe inertial-range multiscale fluctuations insquare fitting. For clarity, the second and third set of data points are
a turbulent fluid. The key concept in the model is a hierarchygispiaced vertically up by a suitable amount.

of moment ratios. Let, denote a certain characteristic vari-
able characterizing fluctuations of the physical system at the
length scalef. Define thepth-order moments,(¢) =(|([").

II. THE HS DESCRIPTION

B

The HS model introduce a hierarchy of functions: Fo(0) =A (Fp(€)> , 2)
Fa.(0) PAF.(6)
Spea(6) where OS_B§1,Ap are indgpe_ndent of. The termF..(¢)
Fo(€) = : (1)  can be eliminated by considering the ratio
Si(6)

Fpea(f) _ _A&< Fo(0) )ﬁ_ @

each of which has the physical dimensionsgfand hence Fol€)  Api\Fpa(f)

dpscribes a certain amplitude of the_ fluctuatiqns. The _funCBoth sides of Eq(3) can be computed from the empirical
tion Fy(f) depends on the probability density functions ppegor histogramsof ¢, calculated from an experimental
(PDFs of &,. For a typical set of PDFs of a turbulent field o nymerical fluctuation field. The linearity in the log-log
and Qf a spatlc_)temporal flgld as we study in this work, theplot of Eq.(3) can be a direct test of the validity of E().
function F(€) increases withp. In other words,Fy(€) at  This will be refer to as the HS similarity test, or tietest
higherp is associated with higher intensity fluctuation struc- [23,34. Figure 2 shows the result of applying tigetest to
tures. We refef(() to as thepth-order HS function. the data of experimental BZ reactigior details, see below

An intuitive idea in the HS model is that in a self- The |inear relation is obviously verified, and the slgpean
organized dynamical steady state, there is a similarity in thgge accurately estimated.
dependence df(€) on ¢ for differentp’s (O<p=w). In the The meaning of the parametgrcan be readily obtained
case of scaling dependence 6nthe simplest similarity is from the definition Eq.(2) [21,23. It describes a kind of
that allF,(€) have the same scaling. This corresponds to theliscrepancy betweeR,,; and F,. When g approaches 1,
Kolmogorov 1941(K41) theory of turbulence in which the high p (intense structures and lowp (weak structures are
large and small scale statistics are completely self-similaralike. This may be realized at either extremely ordered states
For example, wher, represents the locally averaged dissi- or completely homogeneous disordered states. In the former,
pation, then the K41 theory predicts th&(¢)~Fo({)  the structures of various intensities are strongly correlated.
=(g¢)~ ¢° (the mean dissipation is equal to the average enBelow, we will report observations of thjs for ordered spi-
ergy flux that is constant independent of the spaléhis  ral states. The latter situation corresponds to the hypothetical
complete self-similarity law has been demonstrated invalidield postulated by the K41 theory with complete self-
in experiments and numerical simulations during the passimilarity; unfortunately, it has not yet been observed in real
decade, and the dissipation fluctuations have anomalous scalhysical system. Another extreme case is the ligit 0.
ings in£. This is the so-called intermittency effef@3]. This is the case in whick..(¢) stands out as the only kind of

She and Levequg20] postulate that the most intense singular structure which is responsible for the physical pro-
structureF.(€)=lim,_..F,(€) plays a special role, and all cess. A mathematical model displaying the dynamics of one-
other fluctuation structures of finitp obey a hierarchical dimensional shocks, the so-called Burgers equation, exhibits
similarity law, namely behavior close to this description, where only shocks at iso-
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lated points are responsible for the energy dissipation and al
statistical moments are determined by the discontinuities 10} \ —o—M

across the shocks. <«

-
/ }# —0—8
The study of hydrodynamic turbulence reveals that in u| ) —A—¢C
many realistic turbulent systems<(8< 1, namely the most 09F g A
intense fluctuations do not completely dominate and the fluc- . m 2 :Z_ c
tuation structures of various intensities are not completely ., 2
alike. The fluctuation structures of various intensities are alle & —<—R
responsible for the physical process, but they are related b [ o° v T
the hierarchical similarity law Eq2) which we believe is a 07}
form of the self-organization of the system. I
The results reported below on the experimental BZ sys- W‘i
tem and numerical spiral dynamics demonstrate that wher 98|
the hierarchical similarity holds, the paramet@rgives a I S R H T T T T
quantitative description of the degree of order or disorder 04 08 08 10 12 14 16 18 20
and of homogeneity or heterogeneity. Fclose to one, the [HZSO,‘]B (M)
system appears to be orderly homogeneous and orderly self-
organized; for moderately smallgd the system contains a FIG. 3. The HS similarity paramete8 as a function of the
mixture of order and disorder and appears to be heterogeontrol parametefH,SO,]® with fixed [MA]*=0.4M. Symbols in-
neous. The smallesB indicates the appearance of over- dicate the pattern regimes as found experimentale the text for
whelmingly disordered and intermittent state with fully de- detailed explanation
veloped spatiotemporal chaos. The details of these findings
are reported below.

Detailed examinations of the values @fat various con-

trol parameters constitute a further step in the analysis. The
variation of B8 for all patterns observed in the experiment at
lll. ANALYSIS OF EXPERIMENTAL BZ SYSTEM each parameter value pfl,SO,] is recorded in Fig. 3. The

The experimental BZ system analyzed here has been d%%alues of3 seem to exhibit strong fluctuations, and it seems
scribed in detail in Ref[18]. An extensive phase diagram at there is no simple correspo_ndence_ between the value of
(see Fig. 1 is established. in the two-dimensional pIane’B and the regime. More careful inspection reveals, however,
formed b the concentratiofH,SO,J® versus[MAT, in that B8 describes the property of the pattern as expected from

. y |2 . the theoretical consideration above. We attempt to itemize
which various pattern dynamical states are identified basegur observations as follows:

(essentially on visual inspection of experimental images or (a) For the ordered

R o patterns, the valuesBoineasured
'“”’!'”95"3]{. f'lzlcés' The HSh an?]lys%ls p(larformﬁd Ion the total, o ¢jose to one. In Fig.(d), we plot a typical experimental
variation field,G(x,y), rather than directly on the luminosity image of the ordered spiral stat®) with S=1. Theoreti-

(image field f(x,y): which is proportional to the chemical cally speaking,3=1 implies that low and high intensity

concentration: structures are alike, which happens with an ordered pattern.
af\2 [ gf\2]22 Note that some values of measuygare not close to one for
G(x,y) = (5) +<5) : (4)  ordered spiral statege.g., the twoS states for whichg

~0.75 in Fig. 3. One possible explanation for the exception
Then, we construct a set of multiscale variables to be thef the twoS states with lowg is the existence of experimen-
coarse-grained local variation field,, similar to the locally ~ tal noise(e.g., dark spots in the experimental imagtsat

averaged energy dissipation in turbulence, which is defineéhtroduces artificiallysharpstructures in the field. Our stud-
as below: ies show that such “intrusion” of sharp objects lead to a

XHe yse decrease opB. N _
e :if f G(f(x',y")dx dy’ (5) (b) Near the transition between one regime and an-
72 x Jy ' ' other, we observe a depletion of the valugBofompared to
that measured for the states far from the transi{eee Fig.
We examine the statistical properties by calculating the mos). Wwe plot a typical experimental image near the transition
ments ofe, as ¢ varying for increasing control parameter petweenC, and A in Fig. 4b) with 8=0.7. Theoretically
[H2SO,]°. The momentsS,(€)=(|e(|") are calculated by a speaking, a lower value @ indicates a higher intermittency
space average of 256256 pixels and by a time average of the spatial patterns. Figurgl) indeed shows a mixture of
over a number of images collected at different times. Furordered spirals and disordered irregular spiral elements,
thermore, the HS functiors,(¢) are calculated and the ratio which displays clearly a strong heterogeneity. We conclude
across successive orders are evaluated and plotted, as in Figat one kind of intermittency in spatially extended systems
2. It is readily seen that the hierarchical similarity is satisfiedis related to heterogeneous composition of patterns of differ-
and the HS parametg® can be obtainedby a least square ent origins. In addition, we conclude that a sharp variation of
fitting) with a good accuracy. Technically speaking, thisg usually indicates a transition of regimes. This finding is
completes the HS analysis of a fluctuation field at a giverinteresting for defining statistical regimes. We believe that
control parameter. this is the most interesting finding of this work.
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cal calculations, the interaction mechanism responsible for
the generation of spatial patterns is under good control, so
that spatial patterns are free of noises and perturbations that
are inevitable in experiments. For example, optical artifacts
in the experimental images pose great challenge to the HS
analysis(in the calculation of the total variation figldand
thus compromise the clarity of the finding. Secondly, the
experimental states analyzed above are all asymptotical
states. We are also interested in the characterization of tran-
sient states. In other words, we are interested in testing
whether the HS description can characterize the property of a
spatial pattern which undergoes actively dynamical evolu-
tion. Numerical simulations provide a detailed sequence of
patterns under dynamic evolution. Finally, the present analy-
sis of numerically simulated field may inspire further studies
of a variety of two-dimensional partial differential equations
of pattern dynamics, e.g., the Navier-Stokes equation for the
FIG. 4. Optical images of typical experimental states obtainedvortex dynamics. Such empirical studies are important to the
with different[H,SO,]%: (@) an ordered state with 0.367\8=1.0;  finding of right order parameters of chaotic pattern dynam-
(b) a heterogeneous disordered st@teexistence of spiral waves jcs.
and spatiotemporal chaopwith 0.833M, 8=0.7; (c) an abnormal We will study two model equations for the pattern dynam-

turbulent state with 0.867M3=0.94;(d) a homogeneous intermit- jcs leading to spatiotemporal chaos. The first equation is the
tent disordered state with 1.4N3=0.62. The paramet¢MA]* are  two-dimensional CGL equation:

fixed at 0.4M. The region shown is 888.5 mnt out of a disk of
20 mn? in diameter.

A . .

(©) In fully developed spatiotemporally chaotic states, Friaka (1+ic)AA - (1 +icy)| APA, (6)
the spatial patterns develop small-scale intermittent struc-
tures and yield even smaller values gf(<0.65. In Fig. _ . _
4(d), we show an experimental image for the chemical tur-WwhereA(r,t) is a complex function of timét) and spacér),
bulent stateT with 3=0.62. It is clear that very small char- the real parameters, andc; are coefficients characterizing
acteristic scales are developed in the patterns which signifiinear and nonlinear dispersion, respectively. Although the
large fluctuations in the total variation fie{because of the CGL equation is a normal form relevant only near the thresh-
spatial derivatives This enhanced intermittency appears toold of a supercritical Hopf bifurcation, it has become a popu-
be stronger than noted in iteth). lar model to study spatiotemporal chaos where oscillations

(d) There are also other disordered stateg.,A and  and waves are presefit, 7). Indeed, our simulation gives rise
C,) for which g is close to one. Close inspection shows thatto both simple spiral waves and chaotic states which encom-
these disordered states all encompass large-scale irregulsdiss many disordered spatiotemporal oscillations.
spiral elements, as shown i_n Figcawhere 3=0.94. The_se The numerical study of Eq6) is performed using an
large-scale patterns are quite homogeneous and spatially qtyjer algorithm with no-flux boundary condition on a 256
dered, which may yield a large value gf Note that the HS  , 55g square lattice and a time stepAdf=0.03. The initial
analysis conducted in this paper is a spatially multiscaling,hqitions are chosen to be a simple spiral wave which is the

analysis which describes only the property of instantaneougtable solution where;=-1.40 andc,=0.50. We then keep
spatial patterns. Our conclusion is that the states in the re; ', o4 and increase; to explore possibly alternative pat-
gimesA andC, involve only spatially ordered patterns with % 3

actively temporal dynamics. They are distinguished from theterns. We choose to analyze the fluctuation properties of the

other chaotic states |ik& andD. real part f(x,y) of the complex field A(x,y)=f(X,y)

The above analysis helps to understand the nature of tHE!d(X,Y). The details of the computation and the transition
parametelB in the HS analysis of spatiotemporal chaos, andeading to spatiotemporal chaos can be found in RE],
confirms our previous f|nd|ng thaﬂ’s variation reveals a where we have established the fact thatmst is satisfied
transition between two different spatiotemporally chaoticin both ordered spiral states and spatiotemporal chaos states.
states. The spiral turbulence state due to the Doppler instdn the present work, we report the result of a systematic HS
bility has a characteristic scale larger than that in the spiraiinalysis of a sequence of patterns with varying parameters.
turbulence state due to the long wavelength instability. Both Four snapshots of the fielt{x,y) are shown in Fig. 5,
states are homogeneously chaotic, but the later contains mowhich contribute to a so-called far-field breaking-up process.
intermittent small-scale structures. The HS analysis is SuitAs c; increases, the convective instability occurs and the
able to capture such difference. spiral wave breaks up far from the tip. In a range of inter-
mediate values of;, the spiral wave coexists with spa-
tiotemporal chaos surrounding it. Finally, at high values of

We now turn to the analysis of numerically simulated Cs, the spiral wave totally breaks up and spatiotemporal
two-dimensional spatiotemporal dynamics. First, in numeri-chaos dominate the whole bé¢z;>0.76.

IV. ANALYSIS OF NUMERICAL SPIRAL TURBULENCE
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FIG. 5. Snapshots of the fieldx,y) from the CGL equation at
four different parameter values of. (a) Stable spiralc;=0.6; (b) FIG. 7. The HS similarity parametg8 as a function of the
coexistence of spiral and spatiotemporal chags,0.74;(c) coex-  control parametecs in the CGL equation. Note a clear transition
istence of spiral and spatiotemporal chaoss0.75;(d) fully spa- ~ from an ordered state to a spatiotemporally chaotic state.

tiotemporal chaos;3=0.8. . .
appearance of the irregular patterns surrounding the central

spiral leads to a smalles. It is interesting to note that the
final chaotic states at higty have aB~ 0.9 which is bigger
than that of the transitional states with a mixture of ordered
spirals and chaos. This fact is consistent with the previous
finding in the analysis of the experimental BZ system that
the mixed states near the transition are more heterogeneous

The HS analysis of the solutions of the CGL equation
begins with the construction of the total variation field. Let
G(x,y) be defined as in Eq4) with the field f(x,y). The
coarse-grained local variation field,, is defined as in Eq.
(5). The same procedure of the test as explained in the
previous section is now applied to the data As shown in
Fig. 6, good linearity and hence the HS similarity are ob—and tend to have s_maIIqB. .
tained for all the states of both ordered spirals and irregular Another interesting aspect of the numerical CGL dynam-

spiral turbulence, consistent with the result reported previlCS Is the possibility to follow closely a spontaneous genera-

ously [19] and similar to that in Fig. 2. Note again that the tion of spatial disorder from an ordered state. A sequence of

values of B8 are close to one for ordered spiral states, butdynamlcally evolving patterns are shown in Fig. 8, where the

significantly below ong<0.9) when spatiotemporal chaos Spiral core breaks up without meandermg and then .SUbse'
are developed. quently develops to a complete spatiotemporal chaotic pat-

The variation ofg as a function ok is shown in Fig. 7. tern. This fast breaking-up process is phenomenologically

. similar to that of the Doppler instabiliti4,32], but with the
All ordered spiral states havg very close to one, and the spiral center fixed. The details of the explanation for this

process can be found in R¢fL9]. Here, we show four typi-

0.009 T T T T v T v T T T T T v T v T . . . .
: cal snapshots of the spatial pattern at successive times with
0.008 1 T fixed control parameter;=-1.40 andc;=0.8.
0.007 4 -
0.006 1 E
fﬂ 0.005 -
=
% 0.004 + -
o)
g T o (a)p=099 ]
0.002 1 o (b)p=0.82
A (c)B=0.79 |
o001 & (d)p=0.90 ]
0.000 - g N 1 N 1 . 1 N 1 N 1 N 1 . [
0.(;00 O.DID1 0.(;02 0.603 0.(;04 0.(;05 0.(;06 0.(;07

log,IF (IVF, (0]

FIG. 6. The HS similarity test for the four patterns in Fig. 5 of
the CGL equation. A straight line indicates the validity of the HS
similarity. The slopeg is estimated by a least square fitting. For ~ FIG. 8. A sequence of evolving field&x,y) from the CGL
clarity, the second, the third, and the fourth set of data points arequation at different timega) t=390; (b) t=500; (c) t=550; (d) t
displaced vertically up by a suitable amount. =770.
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o o FIG. 11. Snapshots of the field of the fast activatan the MFN

FIG. 9. The HS similarity test for the four patterns in Fig. 8 of equation.(a) Simple spiral,o=0.0525; (b) meandering spiralg
the CGL equation. A straight line indicates the validity of the HS - 07:(c) outbreak of breaking-up spirak=0.0725(d) spatiotem-

simi_larity. The slopeg is e_stimated by a least square fitting. For poral chaosg=0.075. Other parameters aae0.84,b=0.07.
clarity, the second, the third, and the fourth set of data points are

displaced verticall by a suitable amount. . . . .
P vertically up by a sul ! [30,37. While the CGL equation describes an oscillatory

Figure 9 reports the result of thtest for the correspond- dynamics(with two components representing the real and
ing four pattern states in Fig. 8. Good HS similarity propertyimaginary parts of a complex variable figlthe MFN model
is found for all pattern states, including the single spi@l is a two-component model of an excitable system in which a
=~ 1), the intermediate state with generated def¢6ts: 0.9 fast activator(u) and a slow inhibiton(v) are in interaction:
and the full developed turbulent stat8=0.9). Figure 10
shows the variation o8 as a function of time during the core U=— iu(u - 1){u - ﬂ} +Au, (78
breaking up. The paramet@ begins with a value close to o a
one and undergoes a transition when disorder is developed.

At t=550, B8 reaches the minimum value when disorder is v =f(u) -v, (7b)
mixed with order. Later increases again because of the
homogeneity of the disorder. These facts are consistent with 0, Osu< %
the observations reported earlier. Once more, the HS param-

it fu=11-6.72Uu-1? 3i<u<l1 (70)
eter B8 acts as an order parameter to the description of the : o z3=UsL,
evolution of the CGL system from the ordered spiral to the 1, u>1,

disordered spatiotemporal chaos. ) o .

The second model equation we have studied is a simpl&here the form of (u) describes an inhibitor production only
activator-inhibitor model: the two-dimensional MFN model above a threshold value af and the value of related to the
time scales of both activatqu) and inhibitor(v) measures

100 L '-. ' . ' ' o the degree of excitability. A nice feature of the MFN model is
I - e Breaking-up ] that the degree of the excitability of the medium can be con-
095 | .- Lh J tinuously modified by varying the parameters. It is known
\ _/'\. i".\ ] | [30] that fast activator dynamic€0<o<1) and suitable
090 | " - - "l_/ - choice for other parametefa<1, b>0) lead to excitabil-
L -y _-' ity. When one fixes the parameteasand b and gradually
« OBF \ " u ‘.|I|.,-‘ - increaseso, the excited spiral waves will lose its stability,
- / 1 \ 1 begin to meander, then break up at the tip, and spread chaotic
080 |- \_-' Y oom Chaos states . spiral elements outward. Finally, the system develops a state
\ / 1 of spatiotemporal chaos. This scenario is illustrated in Fig.
0.75 - 4 . 11, which contains a sequence of images of gray-scale pic-
\.p"-' 1 ture of the activatou obtained at various times of a dynamic
0.70 - 1 evolution.
200 200 00 500 p— po The numerical calculation of E@7) reported above uses

an Euler algorithm with noflux boundary condition on a

256X 256 square lattice. The data presented in Fig. 11 are
FIG. 10. The HS similarity parametgas a function of time for ~ obtained with fixed parametess-0.84 ando=0.07, but with

a sequence of evolving patterns in the CGL equation. Noteghat several different values of. The simulation starts with a

acts as an order parameter revealing the transition from an ordere&imple spiral initial condition that is the stable solution of the

state to a spatiotemporally chaotic state. system at smaller values of(e.g.,0=0.50. At 6=0.725, a
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o010 F ' j ' ) ' j ' ] transition fromB=1 to B~0.8. The later state corresponds
; to a fully developed spatiotemporal chaos.

The above numerical studies reveal that the CGL and
MFN model equations have less complicated patterns than
those in the experimental BZ system. This significantly re-
g duces the complexity of the matter, and renders the HS de-
scription of the dynamics easy to interpret. It is worth noting
that the numerical data are free from complicated disturbance
so that the values gB show a consistent trend of variation
with less fluctuations, compared to the results of Fig. 3. We
(b) p=0.93 - therefore find the convincing evidence that the HS parameter
A (c)p=0.86 | B is like an order parameter that describes the transition from
52 * (d) p=0.83 an ordered spiral state to a homogeneous disordered spiral

1 . 1 . 1 1 turbulence.
0.000 0.002 0.004 0.006

log,.[F ()F (N V. SUMMARY AND DISCUSSION

log,i[F,,,()/F (]

2 (a) B=0.99

A
e

(o]

0.002 |-

FIG. 12. The HS similarity test for the four pattern states in Fig.  ON€ of the most interesting probl'em.S in the study of the
11 of the MFN equation. A straight line indicates the validity of the Pattern dynamics is to find a quantitative measure that de-
HS similarity. The slopgg is estimated by a least square fitting. For Scfibes the global property of the pattern in both ordered
clarity, the second, the third, and the fourth set of data points arétates and turbulent states. When spatiotemporal chaos pre-
displaced vertically up by a suitable amount. vail and the effective number of degrees of freedom is large,

many familiar quantities in the study of dynamical systems
transition from the simple spiral to spatiotemporal chaos asnd chaos become hard to evaluate. On the other hands, tra-
described earlier is fully realized. ditional statistical measures such as correlation length also

To carry out the HS analysis, the total variation field become ineffective when the pattern presents intermittent
G(x,y) for the MFN model is calculated from the fast acti- features. A new sound phenomenology is needed to capture
vator field u(x,y) as in Eq.(4). The coarse-grained local subtle correlations across multiple scales and multiple fluc-
variation field,e,, is defined as in Eq5). We have applied tuation intensities.
the 3 test for the moments of,, and the result is shown in ~ We present here a sound phenomenology, the HS model,
Fig. 12. Clearly, the hierarchical similarity is verified for all that gives a concise description of a spatiotemporal field by
values ofo and the values oB are derived accurately in all its multifractal scaling properties in terms of the HS param-
cases. The variation g8 as a function ofo is presented in eter . In this work, we present detailed evidence, based on
Fig. 13. The correspondence between the degrees of ordeagalyzing experimental BZ system and numerical CGL and
or disorder and the values gfis quite clear, as shown in the MFN model, that the HS similarity holds for all the fields
study of the CGL equation. As the paramateincreases, the (ordered or disordergdand the derived parametes de-
pattern gradually loses the correlation ghdlecreases. De- scribes the strength of the correlation across scales and
tailed examination shows that the tip of the spiral wave beacross intensities. Fg8 close to one, the pattern is strongly
gins to meander atr=0.625, and completely breaks up at correlated or ordered; a smallgrimplies a higher degree of

0=0.725. The breakup of the tip of the spiral marks theheterogeneity and a mixture of order and disorder; the small-
est B is related to the intermittency associated with fully

' i ' i ' ) ' i developed spatiotemporal chaos. In particular, our analysis

1.00 - [ 1 has identified two different disordered states in the BZ ex-
\-—-\ ] periment: the heterogeneous disordered state with a mixture
| Meanderin . | of sp?rals a_nd irregular spiral elements and the_disordered
0% 9 \ and intermittent state of fully developed spatiotemporal

chaos. In those caseB,provides a useful characterization of
090 i the patterns in transition.

@ Based on the above results, we speculate that the HS simi-

[ ] larity is an emergent property of self-organized complex

o085} /\ . nonlinear multiscale systems in general. This property, like
| - . ] the maximum entropy property of the thermal equilibrium
Breaking-up \./. state, may be difficult to be derived directly from the first

0.80 - 1 principle (such as the Navier-Stokes equation for fluids or

L . L . L . L . the Newtonian mechanical law for gagek is thus impor-
005 0.08 007 008 0% tant to conduct more empirical studies for proving or dis-
° proving the above conjecture, or for assessing its limit of
FIG. 13. The HS similarity parametg® as a function of the Vvalidity.
control parameterr in the MFN equation. Note a clear transition For the quantitative analysis of spatiotemporal chaos, we
from an ordered state to a spatiotemporal chaotic state. believe that it is important to go beyond the simple statistics
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for defects, wave numbers, or other local pattern propertieine of the plausible phenomenological proposals that rest on
since often they are hard to be determined when spatial paémpirical observationg3 tesy. The fact that the HS similar-
terns become overwhelmingly irregular. The HS analysis is ay is found to be valid for a wide class of nonlinear pro-

global method that takes into account the properties of th@esses indicates the possible universal mechanism or prin-
whole field, but emphasizes at the same time subtle correlaa-

; ) ST . iple behind these processes. It is not yet clear how this

tions anq S'”‘"‘?‘F't'es among structures at multiple scales an niversality should be expressg¢el.g., in terms of a varia-

multiple intensities. While the previous wofd8,19 estab- tional principle like the maximum entropy and minimum en-

lishes the validity of the HS model for describing both ex- P pie : by .

perimental and numerical spiral patterns, the present WorkrOpy _pro_duct|0|)|, but we believe that it deserves special

gives detailed evidence that the HS order parani@echar- attention in future studies.

acterizes the degree of heterogeneity and intermittency of

spatial patterns and is particularly suitable for describing the

evolution of patterns from ordered states to fully developed

spatiotemporally chaotic states. This is demonstrated in the ACKNOWLEDGMENTS
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