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We develop a hierarchical structure(HS) analysis for quantitative description of statistical states of spatially
extended systems. Examples discussed here include an experimental reaction-diffusion system with Belousov-
Zhabotinsky kinetics, the two-dimensional complex Ginzburg-Landau equation, and the modified FitzHugh-
Nagumon equation, which all show complex dynamics of spirals and defects. We demonstrate that the spatial-
temporal fluctuation fields in the above-mentioned systems all display the HS similarity property originally
proposed for the study of fully developed turbulence[Z.-S. She and E. Leveque, Phys. Rev. Lett.72, 336
(1994)]. The derived values of a HS parameterb from experimental and numerical data in various physical
regimes exhibit consistent trends and characterize the degree of turbulence in the systems near the transition,
and the degree of heterogeneity of multiple disorders far from the transition. It is suggested that the HS analysis
offers a useful quantitative description for the complex dynamics of two-dimensional spatiotemporal patterns.
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I. INTRODUCTION

Spatiotemporal chaos have been studied extensively in re-
cent years with different levels of quantitative characteriza-
tion [1]. It was discovered that for some spatially extended
systems such as the Rayleigh-Bénard(RB) convection[2,3],
an ordered state of straight or weakly curved rolls breaks
down to a spatiotemporally chaotic state consisting of el-
ementary spiral structures which appear and disappear in an
irregular fashion. Spiral patterns driven far from equilibrium
have also been studied in chemical reaction-diffusion sys-
tems such as Belousov-Zhabotinsky(BZ) reaction[4] and in
biological systems such as cardiac muscle tissue[5]. While
an individual spiral is considered as a self-organized topo-
logical defect, instabilities can lead to so-called defect-
mediated turbulence[6] that is characterized by an exponen-
tial decay of correlations with length and time. There have
been very fruitful efforts in the theoretical, experimental and
numerical studies on the onset phase of the instability which
results in the breaking down of spiral waves to the early
transition to the disorder states(for a review on the complex
Ginzburg-Landau(CGL) system, see Ref.[7]. The study of
the transition via instabilities is important for problems such
as the transition from spiral to spiral turbulence in heart tis-
sue which plays an essential role in cardiac arrhythmia and
fibrillation [5].

Another question often raised is what quantitative mea-
sures are useful when spatiotemporal patterns evolve, espe-
cially after spatiotemporal chaos are developed[7,8]. At-
tempt to identify defects and conduct statistical study of
defects in defect-mediated turbulence has yielded some in-
teresting results. In the discussion on the CGL system, it was

argued[6] that the number of defects can be a convenient
quantity to characterize spatiotemporal chaos. However, the
relation between the finite-time dimension and the number of
defects has not been fully established for systems of all sizes
and of all duration intervals, and thus the method of separa-
tion has not appeared fully convincing[7]. In addition, when
spatiotemporal pattern become chaotic, the identification of
the basic structure(e.g., the defect) is not always possible,
and its statistics become dubious. In general, spirals act more
like waves than particles, but sometimes they may display
spatially intermittent features. Note that, although the RB
convection, the BZ reaction, and the CGL system all exhibit
spiral wave behaviors and defect structures, the instabilities
leading to complex spatiotemporal behaviors are of different
nature. Moreover, local pattern structures may also appear in
various forms of spiral, stripe, hexagon, or square. Neverthe-
less, transitions from ordered to disordered states exist in all
these systems, and a common feature of these transitions is
the generation of multiple scale fluctuations. Therefore,
simple phenomenology independent of the details of the par-
ticular system is needed to reveal the essential feature of
spatiotemporal chaos “buried in the wealth of available data”
[8]. The present work propose such a simple phenomenology
but with a quantitative measure.

There are several other quantitative measures proposed
for characterizing disorder in pattern dynamics. Correlation
length was directly estimated in experiments[9], and was
also extracted from correlation functions[10] or from the
width of so-called structure factors[11,12]. Hu et al. [13]
proposed to use local wave numbers as an order parameter to
characterize experimental RB patterns. Gunaratneet al. [14]
suggested a disorder function to describe disordered patterns
close to locally striped structures[15]. Egolf et al. [16] pre-
sented a simple algorithm for real-time quantitative analysis
of local structure by computing the local wave number in
disordered striped patterns. Newell and co-workers[17] used*Email address: she@pku.edu.cn
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a wave-vector field determined by the wavelet transform to
study the behavior of phase-diffusion equations in the pres-
ence of defects. All the methods mentioned above are effec-
tive to describe irregular patterns with “visually” distinct lo-
cal structures such as local striped structure. When
spatiotemporal chaos are overwhelmingly developed, how-
ever, local striped structures cannot be defined and these
measures cannot be applied. This is the case for spiral turbu-
lence in highly turbulent regimes of BZ experiments where
either exact defect structures or characteristic wave numbers
are difficult to obtain. The present study gives a different
approach which may be applicable to much more disordered
patterns.

The BZ reaction system is a particularly interesting sys-
tem for the study of the spiral dynamics, where spirals can be
supported in excitable or oscillatory media[1,4]. A recent
experimental study[18] has systematically identified several
regimes of spatial patterns resulted from two instabilities, a
Doppler instability and a long wavelength instability. At vari-
ous values of the chemical concentration in reservoirA of
malonic acid fMA gA and in reservoirB of sulfuric acid
fH2SO4gB, the BZ reaction system displays a variety of pat-
terns including(see Fig. 1 which is reproduced from Fig. 1
of Ref. [18]) the following: simply rotating spiralsSd; mean-
dering spiralsMd; chemical turbulence due to the Doppler
instability sDd; abnormal chemical turbulencesAd; renascent
stable spiralsRd; convectively unstable spiral(C1 and C2);
and chemical turbulence due to the long wavelength instabil-
ity sTd. This rich set of spiral patterns is an ideal system for
testing theoretical methods for characterizing spatiotemporal
chaos.

We have proposed a hierarchical structure(HS) descrip-
tion of spatiotemporal chaos[18,19] based on an earlier HS
model of She and Leveque for hydrodynamic turbulence
[20,21]. The starting point of the analysis is to construct a
multiscale probability density function(PDF) description for
the fluctuation field of our interest, and then to develop a
phenomenological model for the description of PDFs over

the entire range of scales. This set of PDFs carries the prob-
ability information for fluctuations at different scales(large
versus small) and at different intensities(tail events versus
core events). The scale enters as a parameter when the fluc-
tuation field is filtered for defining random variables, and the
intensity is parametrized by the order of the moments calcu-
lated with the PDFs. Therefore, the dependence of the mo-
ments on the scale, and on the orderp constitute a set of
quantitative measures about the properties of the field.

The HS model gives a special compact description of this
set of multiscale and multi-intensity properties. The basic
idea in the HS model is that many statistically stationary
multiscale fluctuation fields generated from nonlinear inter-
actions between many degrees of freedom have a self-
organized property expressible in terms of multifractal scal-
ing whose multifractal dimension function can be understood
in terms of a similarity relation between structures of in-
creasing intensities of successive moment-orderp [20]. This
new similarity relation was proposed for turbulence as a gen-
eralization of the Kolmogorov’s complete scale similarity
[21]. Later, it was discovered that the HS similarity is satis-
fied in a variety of nonlinear systems and other complex
systems, such as the RB convection[22], the Couette-Taylor
flow [23], flows in rapidly rotating annulus[24], the climate
variations [25], the variation of nucleotide density along
DNA sequences[26], the diffusion-limited aggregates[27], a
fluctuating luminosity field of natural images[28] and sev-
eral others[29]. More interestingly, the previous studies
show that the derived HS parameters are closely related to
global property of the turbulent system. For example, in
Couette-Taylor flow, one HS parameter gives a signature of
the breaking down of the Taylor vortex[23]. It is thus hoped
that the HS analysis would shed light on the properties of a
fluctuation field displaying spatiotemporal chaos.

In [18,19], the HS analysis is briefly applied to describe
the spiral turbulence in the BZ experiment and in the numeri-
cal solutions of the two-dimensional CGL equation. It was
shown that the HS similarity is accurately verified for vari-
ous experimental and numerical two-dimensional fluctuation
fields which include both the ordered spirals and spatiotem-
poral chaos. In the study of the BZ experiment, it is discov-
ered that the measured HS parameterb shows a transition
when the system undergoes a transition from one kind of
spiral turbulence state to another(e.g., from the stateD to the
stateT in Fig. 1). Those preliminary findings have inspired
the present detailed study of the nature ofb while a more
complex sequence of transitions are analyzed and more nu-
merical models are considered.

Specifically, we will examine more experimental data
with transitions between complex states. In Fig. 1, at
fMA gA=0.4, the patterns vary throughM , S, C1, A, C2, R,
andT. During the transition, the amount of order(e.g., spiral
structures), the degree of heterogeneity(with the mixing of
ordered and disordered structures) and intermittency vary
with parameters. We will show thatb characterizes such
transitions near and far from the threshold in the experimen-
tal BZ system. We supplement this with a further detailed
study of the spiral dynamics in the CGL equation[7] and in
a two-component model equation called modified FitzHugh-
Nagumo(MFN) model [30,31] which has a number of ap-

FIG. 1. The phase diagram of the BZ experiment reproduced
from [18]. The concentrationsfMA gA andfH2SO4gB are the control
parameters. The solid lines indicate the onsets of different instabili-
ties. The dashed lines are the extrapolation of the solid lines. The
heavy line with arrows atfMA gA=0.4M indicate the case studied
here.
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plications in biological systems. In all cases, we focus on the
validity of the HS description and the explanation of the
dynamics in terms of the degree of heterogeneity and of in-
termittency that the value ofb indicates. We believe that the
relationship between the values ofb and the dynamics of
spatiotemporal patterns is valuable.

The paper is organized as follows. In Sec. II, we present
briefly the HS model with special emphasis on the method of
the HS similarity test(b-test) and the explanation of the
meaning ofb. Section III is devoted to the analysis of a
sequence of complex transitions in the experimental BZ sys-
tem. In Sec. IV, we carry out a detailed study of the transition
of the spiral dynamics in the CGL equation and the MFN
equation. Section V offers a summary and some additional
discussion.

II. THE HS DESCRIPTION

The HS model has been originally proposed by She and
Leveque to describe inertial-range multiscale fluctuations in
a turbulent fluid. The key concept in the model is a hierarchy
of moment ratios. Let«, denote a certain characteristic vari-
able characterizing fluctuations of the physical system at the
length scale,. Define thepth-order momentsSps,d=ku«,upl.
The HS model introduce a hierarchy of functions:

Fps,d =
Sp+1s,d
Sps,d

, s1d

each of which has the physical dimension of«, and hence
describes a certain amplitude of the fluctuations. The func-
tion Fps,d depends on the probability density functions
(PDFs) of «,. For a typical set of PDFs of a turbulent field
and of a spatiotemporal field as we study in this work, the
function Fps,d increases withp. In other words,Fps,d at
higherp is associated with higher intensity fluctuation struc-
tures. We referFps,d to as thepth-order HS function.

An intuitive idea in the HS model is that in a self-
organized dynamical steady state, there is a similarity in the
dependence ofFps,d on , for differentp’s s0øpø`d. In the
case of scaling dependence on,, the simplest similarity is
that allFps,d have the same scaling. This corresponds to the
Kolmogorov 1941(K41) theory of turbulence in which the
large and small scale statistics are completely self-similar.
For example, when«, represents the locally averaged dissi-
pation, then the K41 theory predicts thatFps,d,F0s,d
=k«,l,,0 (the mean dissipation is equal to the average en-
ergy flux that is constant independent of the scale). This
complete self-similarity law has been demonstrated invalid
in experiments and numerical simulations during the past
decade, and the dissipation fluctuations have anomalous scal-
ings in ,. This is the so-called intermittency effect[33].

She and Leveque[20] postulate that the most intense
structureF`s,d=limp→`Fps,d plays a special role, and all
other fluctuation structures of finitep obey a hierarchical
similarity law, namely

Fp+1s,d
F`s,d

= ApS Fps,d
F`s,d

Db

, s2d

where 0øbø1,Ap are independent of,. The termF`s,d
can be eliminated by considering the ratio

Fp+1s,d
Fps,d

=
Ap

Ap−1
S Fps,d

Fp−1s,d
Db

. s3d

Both sides of Eq.(3) can be computed from the empirical
PDFs(or histograms) of «, calculated from an experimental
or numerical fluctuation field. The linearity in the log-log
plot of Eq. (3) can be a direct test of the validity of Eq.(2).
This will be refer to as the HS similarity test, or theb test
[23,34]. Figure 2 shows the result of applying theb test to
the data of experimental BZ reaction(for details, see below).
The linear relation is obviously verified, and the slopeb can
be accurately estimated.

The meaning of the parameterb can be readily obtained
from the definition Eq.(2) [21,23]. It describes a kind of
discrepancy betweenFp+1 and Fp. When b approaches 1,
high p (intense) structures and lowp (weak) structures are
alike. This may be realized at either extremely ordered states
or completely homogeneous disordered states. In the former,
the structures of various intensities are strongly correlated.
Below, we will report observations of thisb for ordered spi-
ral states. The latter situation corresponds to the hypothetical
field postulated by the K41 theory with complete self-
similarity; unfortunately, it has not yet been observed in real
physical system. Another extreme case is the limitb→0.
This is the case in whichF`s,d stands out as the only kind of
singular structure which is responsible for the physical pro-
cess. A mathematical model displaying the dynamics of one-
dimensional shocks, the so-called Burgers equation, exhibits
behavior close to this description, where only shocks at iso-

FIG. 2. The HS similarity test for three patterns from the experi-
mental BZ system:fH2SO4gB=0.367M, 1.0M, and 1.6M. The other
control parameter is fixed atfMA gA=0.4M. A straight line indicates
the validity of the HS similarity. The slopeb is estimated by a least
square fitting. For clarity, the second and third set of data points are
displaced vertically up by a suitable amount.
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lated points are responsible for the energy dissipation and all
statistical moments are determined by the discontinuities
across the shocks.

The study of hydrodynamic turbulence reveals that in
many realistic turbulent systems, 0,b,1, namely the most
intense fluctuations do not completely dominate and the fluc-
tuation structures of various intensities are not completely
alike. The fluctuation structures of various intensities are all
responsible for the physical process, but they are related by
the hierarchical similarity law Eq.(2) which we believe is a
form of the self-organization of the system.

The results reported below on the experimental BZ sys-
tem and numerical spiral dynamics demonstrate that when
the hierarchical similarity holds, the parameterb gives a
quantitative description of the degree of order or disorder
and of homogeneity or heterogeneity. Forb close to one, the
system appears to be orderly homogeneous and orderly self-
organized; for moderately smallerb the system contains a
mixture of order and disorder and appears to be heteroge-
neous. The smallestb indicates the appearance of over-
whelmingly disordered and intermittent state with fully de-
veloped spatiotemporal chaos. The details of these findings
are reported below.

III. ANALYSIS OF EXPERIMENTAL BZ SYSTEM

The experimental BZ system analyzed here has been de-
scribed in detail in Ref.[18]. An extensive phase diagram
(see Fig. 1) is established in the two-dimensional plane
formed by the concentrationfH2SO4gB versus fMA gA, in
which various pattern dynamical states are identified based
(essentially) on visual inspection of experimental images or
luminosity fields. The HS analysis is performed on the total
variation field,Gsx,yd, rather than directly on the luminosity
(image) field fsx,yd: which is proportional to the chemical
concentration:

Gsx,yd = FS ] f

] x
D2

+ S ] f

] y
D2G1/2

. s4d

Then, we construct a set of multiscale variables to be the
coarse-grained local variation field,«,, similar to the locally
averaged energy dissipation in turbulence, which is defined
as below:

«, =
1

,2E
x

x+, E
y

y+,

G„fsx8,y8d…dx8dy8. s5d

We examine the statistical properties by calculating the mo-
ments of«, as , varying for increasing control parameter
fH2SO4gB. The momentsSps,d=ku«,upl are calculated by a
space average of 2563256 pixels and by a time average
over a number of images collected at different times. Fur-
thermore, the HS functionsFps,d are calculated and the ratio
across successive orders are evaluated and plotted, as in Fig.
2. It is readily seen that the hierarchical similarity is satisfied
and the HS parameterb can be obtained(by a least square
fitting) with a good accuracy. Technically speaking, this
completes the HS analysis of a fluctuation field at a given
control parameter.

Detailed examinations of the values ofb at various con-
trol parameters constitute a further step in the analysis. The
variation ofb for all patterns observed in the experiment at
each parameter value offH2SO4gB is recorded in Fig. 3. The
values ofb seem to exhibit strong fluctuations, and it seems
that there is no simple correspondence between the value of
b and the regime. More careful inspection reveals, however,
thatb describes the property of the pattern as expected from
the theoretical consideration above. We attempt to itemize
our observations as follows:

(a) For the ordered patterns, the values ofb measured
are close to one. In Fig. 4(a), we plot a typical experimental
image of the ordered spiral statesMd with b=1. Theoreti-
cally speaking,b=1 implies that low and high intensity
structures are alike, which happens with an ordered pattern.
Note that some values of measuredb are not close to one for
ordered spiral states(e.g., the twoS states for whichb
<0.75 in Fig. 3). One possible explanation for the exception
of the twoSstates with lowb is the existence of experimen-
tal noise(e.g., dark spots in the experimental images) that
introduces artificiallysharpstructures in the field. Our stud-
ies show that such “intrusion” of sharp objects lead to a
decrease ofb.

(b) Near the transition between one regime and an-
other, we observe a depletion of the value ofb compared to
that measured for the states far from the transition(see Fig.
3). We plot a typical experimental image near the transition
betweenC1 and A in Fig. 4(b) with b=0.7. Theoretically
speaking, a lower value ofb indicates a higher intermittency
of the spatial patterns. Figure 4(b) indeed shows a mixture of
ordered spirals and disordered irregular spiral elements,
which displays clearly a strong heterogeneity. We conclude
that one kind of intermittency in spatially extended systems
is related to heterogeneous composition of patterns of differ-
ent origins. In addition, we conclude that a sharp variation of
b usually indicates a transition of regimes. This finding is
interesting for defining statistical regimes. We believe that
this is the most interesting finding of this work.

FIG. 3. The HS similarity parameterb as a function of the
control parameterfH2SO4gB with fixed fMA gA=0.4M. Symbols in-
dicate the pattern regimes as found experimentally(see the text for
detailed explanation).
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(c) In fully developed spatiotemporally chaotic states,
the spatial patterns develop small-scale intermittent struc-
tures and yield even smaller values ofb s,0.65d. In Fig.
4(d), we show an experimental image for the chemical tur-
bulent stateT with b=0.62. It is clear that very small char-
acteristic scales are developed in the patterns which signify
large fluctuations in the total variation field(because of the
spatial derivatives). This enhanced intermittency appears to
be stronger than noted in item(b).

(d) There are also other disordered states(e.g.,A and
C2) for which b is close to one. Close inspection shows that
these disordered states all encompass large-scale irregular
spiral elements, as shown in Fig. 4(c) whereb=0.94. These
large-scale patterns are quite homogeneous and spatially or-
dered, which may yield a large value ofb. Note that the HS
analysis conducted in this paper is a spatially multiscaling
analysis which describes only the property of instantaneous
spatial patterns. Our conclusion is that the states in the re-
gimesA andC2 involve only spatially ordered patterns with
actively temporal dynamics. They are distinguished from the
other chaotic states likeT andD.

The above analysis helps to understand the nature of the
parameterb in the HS analysis of spatiotemporal chaos, and
confirms our previous finding thatb’s variation reveals a
transition between two different spatiotemporally chaotic
states. The spiral turbulence state due to the Doppler insta-
bility has a characteristic scale larger than that in the spiral
turbulence state due to the long wavelength instability. Both
states are homogeneously chaotic, but the later contains more
intermittent small-scale structures. The HS analysis is suit-
able to capture such difference.

IV. ANALYSIS OF NUMERICAL SPIRAL TURBULENCE

We now turn to the analysis of numerically simulated
two-dimensional spatiotemporal dynamics. First, in numeri-

cal calculations, the interaction mechanism responsible for
the generation of spatial patterns is under good control, so
that spatial patterns are free of noises and perturbations that
are inevitable in experiments. For example, optical artifacts
in the experimental images pose great challenge to the HS
analysis(in the calculation of the total variation field) and
thus compromise the clarity of the finding. Secondly, the
experimental states analyzed above are all asymptotical
states. We are also interested in the characterization of tran-
sient states. In other words, we are interested in testing
whether the HS description can characterize the property of a
spatial pattern which undergoes actively dynamical evolu-
tion. Numerical simulations provide a detailed sequence of
patterns under dynamic evolution. Finally, the present analy-
sis of numerically simulated field may inspire further studies
of a variety of two-dimensional partial differential equations
of pattern dynamics, e.g., the Navier-Stokes equation for the
vortex dynamics. Such empirical studies are important to the
finding of right order parameters of chaotic pattern dynam-
ics.

We will study two model equations for the pattern dynam-
ics leading to spatiotemporal chaos. The first equation is the
two-dimensional CGL equation:

] A

] t
= A + s1 + ic1dDA − s1 + ic3duAu2A, s6d

whereAsr ,td is a complex function of timestd and spacesrd,
the real parametersc1 andc3 are coefficients characterizing
linear and nonlinear dispersion, respectively. Although the
CGL equation is a normal form relevant only near the thresh-
old of a supercritical Hopf bifurcation, it has become a popu-
lar model to study spatiotemporal chaos where oscillations
and waves are present[1,7]. Indeed, our simulation gives rise
to both simple spiral waves and chaotic states which encom-
pass many disordered spatiotemporal oscillations.

The numerical study of Eq.(6) is performed using an
Euler algorithm with no-flux boundary condition on a 256
3256 square lattice and a time step ofDt=0.03. The initial
conditions are chosen to be a simple spiral wave which is the
stable solution whenc1=−1.40 andc3=0.50. We then keep
c1 fixed and increasec3 to explore possibly alternative pat-
terns. We choose to analyze the fluctuation properties of the
real part fsx,yd of the complex field Asx,yd= fsx,yd
+ igsx,yd. The details of the computation and the transition
leading to spatiotemporal chaos can be found in Ref.[19],
where we have established the fact that theb test is satisfied
in both ordered spiral states and spatiotemporal chaos states.
In the present work, we report the result of a systematic HS
analysis of a sequence of patterns with varying parameters.

Four snapshots of the fieldfsx,yd are shown in Fig. 5,
which contribute to a so-called far-field breaking-up process.
As c3 increases, the convective instability occurs and the
spiral wave breaks up far from the tip. In a range of inter-
mediate values ofc3, the spiral wave coexists with spa-
tiotemporal chaos surrounding it. Finally, at high values of
C3, the spiral wave totally breaks up and spatiotemporal
chaos dominate the whole boxsc3.0.76d.

FIG. 4. Optical images of typical experimental states obtained
with different fH2SO4gB: (a) an ordered state with 0.367M,b=1.0;
(b) a heterogeneous disordered state(coexistence of spiral waves
and spatiotemporal chaos) with 0.833M, b=0.7; (c) an abnormal
turbulent state with 0.867M,b=0.94; (d) a homogeneous intermit-
tent disordered state with 1.4M,b=0.62. The parameterfMA gA are
fixed at 0.4M. The region shown is 8.538.5 mm2 out of a disk of
20 mm2 in diameter.
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The HS analysis of the solutions of the CGL equation
begins with the construction of the total variation field. Let
Gsx,yd be defined as in Eq.(4) with the field fsx,yd. The
coarse-grained local variation field,«,, is defined as in Eq.
(5). The same procedure of theb test as explained in the
previous section is now applied to the data«,. As shown in
Fig. 6, good linearity and hence the HS similarity are ob-
tained for all the states of both ordered spirals and irregular
spiral turbulence, consistent with the result reported previ-
ously [19] and similar to that in Fig. 2. Note again that the
values ofb are close to one for ordered spiral states, but
significantly below ones,0.9d when spatiotemporal chaos
are developed.

The variation ofb as a function ofc3 is shown in Fig. 7.
All ordered spiral states haveb very close to one, and the

appearance of the irregular patterns surrounding the central
spiral leads to a smallerb. It is interesting to note that the
final chaotic states at highc3 have ab<0.9 which is bigger
than that of the transitional states with a mixture of ordered
spirals and chaos. This fact is consistent with the previous
finding in the analysis of the experimental BZ system that
the mixed states near the transition are more heterogeneous
and tend to have smallerb.

Another interesting aspect of the numerical CGL dynam-
ics is the possibility to follow closely a spontaneous genera-
tion of spatial disorder from an ordered state. A sequence of
dynamically evolving patterns are shown in Fig. 8, where the
spiral core breaks up without meandering and then subse-
quently develops to a complete spatiotemporal chaotic pat-
tern. This fast breaking-up process is phenomenologically
similar to that of the Doppler instability[4,32], but with the
spiral center fixed. The details of the explanation for this
process can be found in Ref.[19]. Here, we show four typi-
cal snapshots of the spatial pattern at successive times with
fixed control parameterc1=−1.40 andc3=0.8.

FIG. 5. Snapshots of the fieldfsx,yd from the CGL equation at
four different parameter values ofc3. (a) Stable spiral,c3=0.6; (b)
coexistence of spiral and spatiotemporal chaos,c3=0.74; (c) coex-
istence of spiral and spatiotemporal chaos,c3=0.75; (d) fully spa-
tiotemporal chaos,c3=0.8.

FIG. 6. The HS similarity test for the four patterns in Fig. 5 of
the CGL equation. A straight line indicates the validity of the HS
similarity. The slopeb is estimated by a least square fitting. For
clarity, the second, the third, and the fourth set of data points are
displaced vertically up by a suitable amount.

FIG. 7. The HS similarity parameterb as a function of the
control parameterc3 in the CGL equation. Note a clear transition
from an ordered state to a spatiotemporally chaotic state.

FIG. 8. A sequence of evolving fieldsfsx,yd from the CGL
equation at different times.(a) t=390; (b) t=500; (c) t=550; (d) t
=770.
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Figure 9 reports the result of theb test for the correspond-
ing four pattern states in Fig. 8. Good HS similarity property
is found for all pattern states, including the single spiralsb
<1d, the intermediate state with generated defectssb,0.9d
and the full developed turbulent statesb<0.9d. Figure 10
shows the variation ofb as a function of time during the core
breaking up. The parameterb begins with a value close to
one and undergoes a transition when disorder is developed.
At t<550, b reaches the minimum value when disorder is
mixed with order. Later,b increases again because of the
homogeneity of the disorder. These facts are consistent with
the observations reported earlier. Once more, the HS param-
eter b acts as an order parameter to the description of the
evolution of the CGL system from the ordered spiral to the
disordered spatiotemporal chaos.

The second model equation we have studied is a simple
activator-inhibitor model: the two-dimensional MFN model

[30,31]. While the CGL equation describes an oscillatory
dynamics(with two components representing the real and
imaginary parts of a complex variable field), the MFN model
is a two-component model of an excitable system in which a
fast activatorsud and a slow inhibitorsvd are in interaction:

ut = −
1

s
usu − 1dFu −

v + b

a
G + Du, s7ad

vt = fsud − v, s7bd

fsud = 50, 0ø u ,
1
3 ,

1 − 6.75usu − 1d2, 1
3 ø u ø 1,

1, u . 1,
6 s7cd

where the form offsud describes an inhibitor production only
above a threshold value ofu, and the value ofs related to the
time scales of both activatorsud and inhibitorsvd measures
the degree of excitability. A nice feature of the MFN model is
that the degree of the excitability of the medium can be con-
tinuously modified by varying the parameters. It is known
[30] that fast activator dynamicss0,s!1d and suitable
choice for other parameterssa,1, b.0d lead to excitabil-
ity. When one fixes the parametersa and b and gradually
increasess, the excited spiral waves will lose its stability,
begin to meander, then break up at the tip, and spread chaotic
spiral elements outward. Finally, the system develops a state
of spatiotemporal chaos. This scenario is illustrated in Fig.
11, which contains a sequence of images of gray-scale pic-
ture of the activatoru obtained at various times of a dynamic
evolution.

The numerical calculation of Eq.(7) reported above uses
an Euler algorithm with noflux boundary condition on a
2563256 square lattice. The data presented in Fig. 11 are
obtained with fixed parametersa=0.84 andb=0.07, but with
several different values ofs. The simulation starts with a
simple spiral initial condition that is the stable solution of the
system at smaller values ofs (e.g.,s=0.50). At s=0.725, a

FIG. 9. The HS similarity test for the four patterns in Fig. 8 of
the CGL equation. A straight line indicates the validity of the HS
similarity. The slopeb is estimated by a least square fitting. For
clarity, the second, the third, and the fourth set of data points are
displaced vertically up by a suitable amount.

FIG. 10. The HS similarity parameterb as a function of time for
a sequence of evolving patterns in the CGL equation. Note thatb
acts as an order parameter revealing the transition from an ordered
state to a spatiotemporally chaotic state.

FIG. 11. Snapshots of the field of the fast activatoru in the MFN
equation.(a) Simple spiral,s=0.0525; (b) meandering spiral,s
=0.07;(c) outbreak of breaking-up spiral,s=0.0725;(d) spatiotem-
poral chaos,s=0.075. Other parameters area=0.84,b=0.07.
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transition from the simple spiral to spatiotemporal chaos as
described earlier is fully realized.

To carry out the HS analysis, the total variation field
Gsx,yd for the MFN model is calculated from the fast acti-
vator field usx,yd as in Eq. (4). The coarse-grained local
variation field,«,, is defined as in Eq.(5). We have applied
the b test for the moments of«,, and the result is shown in
Fig. 12. Clearly, the hierarchical similarity is verified for all
values ofs and the values ofb are derived accurately in all
cases. The variation ofb as a function ofs is presented in
Fig. 13. The correspondence between the degrees of orders
or disorder and the values ofb is quite clear, as shown in the
study of the CGL equation. As the parameters increases, the
pattern gradually loses the correlation andb decreases. De-
tailed examination shows that the tip of the spiral wave be-
gins to meander ats=0.625, and completely breaks up at
s=0.725. The breakup of the tip of the spiral marks the

transition fromb<1 to b<0.8. The later state corresponds
to a fully developed spatiotemporal chaos.

The above numerical studies reveal that the CGL and
MFN model equations have less complicated patterns than
those in the experimental BZ system. This significantly re-
duces the complexity of the matter, and renders the HS de-
scription of the dynamics easy to interpret. It is worth noting
that the numerical data are free from complicated disturbance
so that the values ofb show a consistent trend of variation
with less fluctuations, compared to the results of Fig. 3. We
therefore find the convincing evidence that the HS parameter
b is like an order parameter that describes the transition from
an ordered spiral state to a homogeneous disordered spiral
turbulence.

V. SUMMARY AND DISCUSSION

One of the most interesting problems in the study of the
pattern dynamics is to find a quantitative measure that de-
scribes the global property of the pattern in both ordered
states and turbulent states. When spatiotemporal chaos pre-
vail and the effective number of degrees of freedom is large,
many familiar quantities in the study of dynamical systems
and chaos become hard to evaluate. On the other hands, tra-
ditional statistical measures such as correlation length also
become ineffective when the pattern presents intermittent
features. A new sound phenomenology is needed to capture
subtle correlations across multiple scales and multiple fluc-
tuation intensities.

We present here a sound phenomenology, the HS model,
that gives a concise description of a spatiotemporal field by
its multifractal scaling properties in terms of the HS param-
eterb. In this work, we present detailed evidence, based on
analyzing experimental BZ system and numerical CGL and
MFN model, that the HS similarity holds for all the fields
(ordered or disordered) and the derived parameterb de-
scribes the strength of the correlation across scales and
across intensities. Forb close to one, the pattern is strongly
correlated or ordered; a smallerb implies a higher degree of
heterogeneity and a mixture of order and disorder; the small-
est b is related to the intermittency associated with fully
developed spatiotemporal chaos. In particular, our analysis
has identified two different disordered states in the BZ ex-
periment: the heterogeneous disordered state with a mixture
of spirals and irregular spiral elements and the disordered
and intermittent state of fully developed spatiotemporal
chaos. In those cases,b provides a useful characterization of
the patterns in transition.

Based on the above results, we speculate that the HS simi-
larity is an emergent property of self-organized complex
nonlinear multiscale systems in general. This property, like
the maximum entropy property of the thermal equilibrium
state, may be difficult to be derived directly from the first
principle (such as the Navier-Stokes equation for fluids or
the Newtonian mechanical law for gases). It is thus impor-
tant to conduct more empirical studies for proving or dis-
proving the above conjecture, or for assessing its limit of
validity.

For the quantitative analysis of spatiotemporal chaos, we
believe that it is important to go beyond the simple statistics

FIG. 12. The HS similarity test for the four pattern states in Fig.
11 of the MFN equation. A straight line indicates the validity of the
HS similarity. The slopeb is estimated by a least square fitting. For
clarity, the second, the third, and the fourth set of data points are
displaced vertically up by a suitable amount.

FIG. 13. The HS similarity parameterb as a function of the
control parameters in the MFN equation. Note a clear transition
from an ordered state to a spatiotemporal chaotic state.
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for defects, wave numbers, or other local pattern properties,
since often they are hard to be determined when spatial pat-
terns become overwhelmingly irregular. The HS analysis is a
global method that takes into account the properties of the
whole field, but emphasizes at the same time subtle correla-
tions and similarities among structures at multiple scales and
multiple intensities. While the previous work[18,19] estab-
lishes the validity of the HS model for describing both ex-
perimental and numerical spiral patterns, the present work
gives detailed evidence that the HS order parametersbd char-
acterizes the degree of heterogeneity and intermittency of
spatial patterns and is particularly suitable for describing the
evolution of patterns from ordered states to fully developed
spatiotemporally chaotic states. This is demonstrated in the
BZ, CGL and MFN systems. Our approach may be easily
extended to describe other complex pattern-formation sys-
tems with different unit “cells” than spirals, such as strips,
hexagons, squares, triangles, etc., and this is one of the ad-
vantages of the HS analysis.

To make a concise description for all these statistical
properties, a phenomenology is required. The HS analysis is

one of the plausible phenomenological proposals that rest on
empirical observations(b test). The fact that the HS similar-
ity is found to be valid for a wide class of nonlinear pro-
cesses indicates the possible universal mechanism or prin-
ciple behind these processes. It is not yet clear how this
universality should be expressed(e.g., in terms of a varia-
tional principle like the maximum entropy and minimum en-
tropy production), but we believe that it deserves special
attention in future studies.
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